Multivariate longitudinal data analysis with mixed effects hidden Markov models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate Longitudinal Data Analysis with Mixed Effects Hidden Markov Models

Multiple longitudinal responses are often collected as a means to capture relevant features of the true outcome of interest, which is often hidden and not directly measurable. We outline an approach which models these multivariate longitudinal responses as generated from a hidden disease process. We propose a class of models which uses a hidden Markov model with separate but correlated random e...

متن کامل

Mixed Hidden Markov Models: An Extension of the Hidden Markov Model to the Longitudinal Data Setting

Hidden Markov models (HMMs) are a useful tool for capturing the behavior of overdispersed, autocorrelated data. These models have been applied to many different problems, including speech recognition, precipitation modeling, and gene finding and profiling. Typically, HMMs are applied to individual stochastic processes; HMMs for simultaneously modeling multiple processes—as in the longitudinal d...

متن کامل

Mixed hidden Markov quantile regression models for longitudinal data with possibly incomplete sequences.

Quantile regression provides a detailed and robust picture of the distribution of a response variable, conditional on a set of observed covariates. Recently, it has be been extended to the analysis of longitudinal continuous outcomes using either time-constant or time-varying random parameters. However, in real-life data, we frequently observe both temporal shocks in the overall trend and indiv...

متن کامل

Hidden Markov Models with Mixed States

We note similarities of the state space reconstruction (\Embedology") practiced in numerical work on chaos, state space methods of stochastic systems theory, and the hidden Markov models (HMMs) used in speech research. We review Baum's EM algorithm in general and the speciic forward-backward algorithm that optimizes a class of HMM that has a mixed state space consisting of continuous and discre...

متن کامل

Multivariate State Hidden Markov Models for Mark-Recapture Data

Abstract. State-based Cormack-Jolly-Seber (CJS) models have become an often used method for assessing states or conditions of free-ranging animals through time. Although originally envisioned to account for differences in survival and observation processes when animals are moving though various geographical strata, the model has evolved to model vital rates in di↵erent life-history or diseased ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biometrics

سال: 2015

ISSN: 0006-341X

DOI: 10.1111/biom.12296